Roll No
 CE-3003-CBGS
 B.E., III Semester
 Examination, December 2020
 Choice Based Grading System (CBGS)
 Strength of Materials
 Time : Three Hours
 Maximum Marks: 70

Note: i) Attempt any five questions.
ii) All questions carry equal marks.
iii) Assume any data suitably.

1. a) A mild steel specimen is fixed at both the end as shown in fig. if load, $\mathrm{P}=30 \mathrm{kN}$ and area $=5$ enis given. Find the maximum stress induced in the specimen.

[^0]2. a) A rectangular beam 300 mm deep is simply supported over a span of 4 meters. What uniformly distributed load the beam may carry, if the bending stress is not exceed 120 MPa . Take I $=9 \times 10 \mathrm{~mm}^{4}$.
b) Show that for a rectangular section, the distribution of shearing stress is parabolic.7
3. Determine the deflection at free and of beam of constant uniform cross-section of length L. It is subjected to a concentrated load P at the free end with uniformly varying load in the full span of the beam as shown below. Also find out the slope at the free end by using STRAIN ENERGY. 14

4. a) A T-Section $150 \mathrm{~mm} \times 120 \mathrm{~mm} \times 20 \mathrm{~mm}$ is used as a strict of 4 m long with hinged at its both ends. Calculate the crippling load if modulus of elasticity for the material be $2.0 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
b) State the Euler's assumption in column theory and also explain the middle third rule.
5. a) A Solic steel shaft is to transmit a torque of $10 \mathrm{kN}-\mathrm{m}$. If the sinearing stress is not to exceed 45 MPa , find the vainimum diameter of shaft.
b) Derive an expression for the angle of twist in the case of a member of circular cross-section subjected to torsional
moment.
6. a) Explain the principle of super position.
b) Calculate the strain energy stored in a bar of 2 m long, $5-\mathrm{mm}$ wide and 40 mm thick when it is subjected to a tensile load of 60 kN . Take $\mathrm{E}=200 \mathrm{GPa}$
7. a) A I-section, with rectangular ends, has following dimensions:

Flanges $=150 \mathrm{~mm} \times 20 \mathrm{~mm}$
Web $=300 \mathrm{~mm} \times 10 \mathrm{~mm}$.
Find the maximum shearing stress developed in the beam for a shear force of 50 kW . 7
b) A cantilever beam 2 m long is subjected to uniformly distributed load of $5 \mathrm{kN} / \mathrm{m}$ over its entire length. Find the slope and deflection of the cantilever beam at it free end Take $\mathrm{EI}=2.5 \times 1 \mathbb{O}^{2} \mathrm{~N} \mathrm{~mm}{ }^{2}$.
8. Write short notes on:
a) Relationship between modulus of elasticity, modulus of rigidity and Poisson's Ratio
b) Longitudinal and lateral strain
c) Stability
d) Factor of safety

[^0]: $\left.(1)^{\prime}\right)$ Explain in detail.
 i) Plain Stress condition
 ii) Plain strain condition

